gps制导结合什么制导形成精密制导?不是地表水平位移监测方法
本文目录
- gps制导结合什么制导形成精密制导
- 不是地表水平位移监测方法
- vor导航系统相比ndb导航系统有哪些优点
- 导航GPS怎么分
- 全球四大卫星导航系统
- 先进导航与精密定位研究什么
- 全球四大定位系统是什么
- 全球四大卫星导航系统
- 中国科学院精密导航定位与定时技术重点实验室在哪
gps制导结合什么制导形成精密制导
gps制导结合惯性导航组成的复合制导形成精密制导。
因为惯性导航的优点是抗干扰性能好,缺点是随时间产生漂移,两者结合可实现优势互补,所以gps制导结合惯性导航组成的复合制导形成精密制导。
GPS制导,接收GPS的导航信号,导引和控制导弹飞向目标的卫星制导。
不是地表水平位移监测方法
地表位移监测分地表相对位移监测和地表绝对位移监测,包括垂直位移和水平位移。地表相对位移监测主要是对在地表形成的裂缝变化量的监测。地表绝对位移监测主要指地表指定点的三维位移量监测。
山坡和建筑物(挡土墙、房屋、水沟、路面等)上的裂缝是地质灾害体变形最明显的标志,对这些裂缝进行监测最简单易行又最直接。由于地表(包括地表建筑物)变形最为直观,而且仪器安装省工省时、投资少,因此地表形变监测方法是监测工作中被最优先考虑的技术方法,而且此类方法所采用的仪器,开发的历史最早,类型也最多,使用经验也最成熟。因此该类技术方法在监测中起着非常重要的作用。
地表形变监测采用的常规监测技术方法主要有:机械测缝法、测缝计法、地面倾斜仪法、水准测量法、全球卫星导航定位技术(GPS法)、高分辨遥感影像法、三维激光扫描法、测距法、干涉雷达法、激光雷达技术方法等。近年来,随着监测技术水平和科学技术的发展,一些高新技术方法如遥感(RS)法、三维激光扫描法等也逐渐被引入地质环境监测领域,并发挥了显著的作用。
一、机械测缝法
机械测缝法就是在裂缝两侧或滑带两侧插筋、埋桩或标记,用钢尺、皮尺、卡尺等测量其相对位移,或在裂缝或滑带上粘贴纸片、水泥砂浆片或玻璃片等,监测其变形情况。该方法的优点是简便、直观、可靠、见效快、成本低,便于普及,不受环境影响;缺点是精度稍差、信息量少,适用于群测群防监测。
利用简易的机械测量地表与建筑物裂缝变化,作为正式建立监测系统之前的监测手段及正规监测系统的补充手段,至今仍被人们所重视。其原因是该法简单可行、便宜、有一定精度。1985年,J.Dunnicli等美英法学者联合提出将玻璃板粘贴在裂缝上用直尺量测、将钢栓埋在裂缝两侧用一条跨越钢栓的钢尺进行量测及采用手提式机械测量计量测裂缝等几十种简易方法。并建议在能用机械法满足要求的情况下,尽量优先考虑选用机械法(图3-1)。
二、测缝计法
测缝计是一端固定在滑体上,另一端在仪器上用重锤或发条拉紧。当裂缝伸缩时,钢线被拉长或缩短,即可得到位移随时间的变化值。裂缝计法监测地表裂缝其仪器原理简单,结构不复杂,便于操作,见效快,成果资料直观可靠。
测缝计的工作原理是:对位移信号准确采集,采用振弦式或者压阻式等原理,转换为电信号进行输出,再把采集到的电信号准确换算成位移值。这里以振弦式裂缝计(图3-2,图3-3)为例,简要介绍一下其工作原理。把测缝计安装到需要测量的部位,待测线变形通过拉杆传递给拉簧产生一与变形呈线性关系的力ΔF作用于感应体上,引起振弦的自振频率发生变化,由二次仪表通过线圈对振弦激振并接收数字信号,便可按照给出的计算公式求得作用在测缝计两端线性变形的大小。一般公式如下:
图3-1 机械测缝法的几种情况
a—测量A、B两柱之间的相对位移;b—测量裂缝的水平、垂直位移;c—伸缩标尺读数即裂缝位移;d—竖直刻度即为裂缝位移
Ji=K(Fi-F0)+bΔt
式中:Ji—测缝计所受到的变形值;K—测缝计标定系数;F0—测缝计零点输出频率值;Fi—对应于Ji的输出频率值;b—温度修正系数,由制造商给出;Δt—相对基准点温度改变量,温度升高为正,下降为负。
图3-2 测缝计
图3-3 测缝计野外测量图
三、地面倾斜仪法
地表倾斜监测具有很大的适用性。当不稳定斜坡的周界范围尚不清楚时,可用地面倾斜仪来测量地面点的倾斜与旋转分量。这种方法最初主要用于监测露天矿和铁路挖方边坡的移动,20世纪60年代开始用于滑坡的监测。利用地面倾斜仪监测滑体地面倾斜或倾角变化和方向,精度高,易操作。主要适用于倾倒和角变位的滑体,即倾斜式崩塌、拉裂式崩塌、滑移式崩塌之“蠕滑-拉裂”型滑坡中的切层滑坡、“滑移-弯曲”型滑坡等,不适用于顺层滑坡。对于崩滑初期阶段的危岩体(开裂岩土体),当以角变位和倾摆变形为主时,有条件的情况下,可投入精度高的地表倾斜监测。
倾斜监测仪的核心部件一般都是加速度计。根据地球引力相对不变这一特点,对不同倾斜程度导致的加速度变化进行采集,从而换算成倾斜角度。
四、水准测量法
常规地面沉降监测一般采用重复精密水准测量方法,布设一、二等水准网后通过严密的平差程序,最终提取出每一期的微小地面沉降变化值。通过定期的重复观测,为研究与控制地面沉降提供准确、可靠的资料。
在20世纪80年代,由于还没有出现全球卫星定位系统(GPS),开展水准测量工作最常见的方法主要用经纬仪和水准仪,或者是从20世纪50年代开始使用的光电测距仪(EDM)。如果只是测量垂直位置,通常选择使用水准仪。差分水准测量技术允许测量人员通过使用精确刻度的望远镜和分度竖尺从一个已知点到另一测点计算得出海拔高程。除了操作简单,这种方法也非常精确。采用水准测量监测地面沉降,早期被包括美国、日本在内的大多数国家所采用,目前日本还有很多地区采用水准测量监测地面沉降(图3-4)。
图3-4 水准测量示意图
水准测量早期在我国的大中城市,特别是我国最大工业城市上海就已开始应用,而且沿用至今,积累了很多成功的经验。水准测量观测地面沉降的主要优点是测量的精度高。就国内而言,1842年,上海通过市区重复水准测量发现了地面沉降,通过水准资料,编绘了最早的上海地面沉降发育程度图。1962年开始长期的地面沉降水准测量工作(上海市地质调查院,2008)。利用水准测量方法监测地面沉降的地区或城市还有华北平原、台北、太原、西安及江苏苏锡常地区、浙江杭嘉湖地区等。从水准测量结果看,精密水准测量在最初确定是否有地面沉降发生时具有重要作用。精密水准测量方法原理成熟,仪器操作简便,地面沉降测量精度高,至今仍是区域地面沉降监测的主要方法。
五、全球卫星导航定位技术(GPS法)
与常规水准测量技术相比,GPS测量具有定位精度高、观测时间短、测站间无须通视、可提供三维坐标、操作简便、可全天候作业等优点,因此GPS技术具有广阔的应用前景。
GPS绝对定位也叫单点定位,通常是指在协议地球坐标系中,直接确定观测站相对于坐标系原点(地球质心)绝对坐标的一种定位方法。“绝对”一词,主要是为了区别相对定位方法,绝对定位与相对定位,在观测方式、数据处理、定位精度以及应用范围等方面均有原则上的区别。
利用GPS进行绝对定位的基本原理,是以GPS卫星和接收机天线之间的距离(或距离差)测量为基础,并根据已知的卫星瞬间坐标,来确定用户接收机天线所对应的点位,即观测站的位置。
GPS绝对定位方法的实质,即是测量学中的空间距离后方交会。为此,在1个观测站上,原则上有3个独立的距离观测量便够了,这时观测站应位于分别以3颗卫星为球心,相应距离为半径的球与观测站所在平面交线的交点。
但是,由于GPS采用单程测距原理,同时卫星钟与用户接收机钟又难于保持严格同步,所以,实际观测的测站至卫星之间的距离,均含有卫星钟和接收机钟同步差(故习惯上称之为伪距)。关于卫星钟差,我们可以应用导航电文中所给出的有关钟差参数加以修正,而接收机的钟差,一般难于预先准确地确定。所以,通常均把它作为一个未知参数,与观测站的坐标在数据处理中一并求解。因此,在1个观测站上,为了实时求解4个未知参数(3个点位坐标分量和1个钟差参数),便至少需要4个同步伪距观测值。也就是说,至少必须同时观测4颗卫星(图3-5)。
图3-5 GPS绝对定位原理
图3-5中xsi、ysi、zsi为定位卫星的瞬间坐标(为已知值),x、y、z为接收机的坐标(为未知值),ρ·si为卫星到GPS接收机之间的伪距,C为光速,dτ为卫星钟和GPS接收机之间的时间差。GPS相对定位,也叫差分GPS定位,是目前GPS定位中精度最高的一种定位方法,它广泛地应用于大地测量、精密工程测量、地球动力学的研究和精密导航。
相对定位的最基本情况是用两台GPS接收机,分别安置在基线的两端,并同步观测相同的GPS卫星,以确定基线端点在协议地球坐标系中的相对位置或基线向量。
相对定位包括静态相对定位和快速相对定位。
静态相对定位,即设置在基线端点的接收机是固定不动的,这样便可以通过连续观测,取得充分的多余观测数据,以改善定位的精度。一般均采用载波相位观测值(或测相伪距)为基本观测量。在两个或多个观测点同步观测相同的卫星,可有效地消除或减弱卫星的轨道误差、卫星钟差、接收机钟差等的影响。
快速相对定位法的基本思想是一台接收机在参考点(或基准站)上固定不动,并对所有可见的GPS卫星进行连续观测,而另一台接收机在其周围的观测站流动,并在每一流动站上,静止地进行观测,以确定流动站与基准站之间的相对位置(图3-6)。这种方法的定位精度与静态相对定位相当,由于速度快、精度高,所以被广大GPS用户采用。我们也将采用这种定位方式进行三维定位,最后解算出在垂直方向上地面高程的变化量(地面沉降量)。
图3-6 GPS快速相对定位
由于GPS具有全球性、全天候、高精度、实时性等特点,应用GPS对地面沉降进行监测已经被广大发达国家所采用。美国加利福尼亚州是地面沉降比较严重的地区,美国地质调查局在该地区布设GPS监测站250个,在区域上每30km一个点,重点区域加密到3km一个点,对其进行重点监测,预期监测精度达到1mm/a。美国在其他一些地方如德克萨斯州的休斯敦地区、新墨西哥州的阿尔伯克基(Albuquerque,New Mexico)、亚利桑那州的艾弗拉河谷(the Avra Valley,Arizona)、内华达州的拉斯维加斯(Las Vegas,Nevada)、加州的萨克拉曼多-圣华金三角洲(the Sacramento-San Joaquim Delta,California)、亚利桑那州的图森盆地(the Tucson basin,Arizona)也已经建立了完善的地面沉降GPS大地监测网。日本在1995年阪神地震后,提出建立以30km的密度全面覆盖国土的GPS观测网,拟建约1000个站,目前已建成约650个站,以加强地表的变形监测。
据最新资料,目前GPS在平面的定位精度是5mm,在垂直方向上测高程的绝对精度是水平方向上的2~3 倍。如果采用相对定位技术,GPS 的定位技术将达到毫米级,对于缓变性的地面沉降,GPS精度足以满足监测的需要。因此世界上有越来越多的国家在地面沉降监测中应用了GPS技术:如意大利的波河流域和威尼斯地区、委内瑞拉西部油田、英国柴郡地区、澳大利亚拉特罗布谷地等分别建立GPS监测网对地面沉降进行全面监测。
国内应用GPS技术监测地面沉降起步较晚。1995年,同济大学在苏州建立了三维形变监测网,采用GPS技术开展了苏州地面沉降监测试验。1995年,中国地震局第一地形变监测中心在天津(主要在滨海新区)布设了由18个GPS监测站组成的GPS监测试验网。7年的监测试验表明,如果考虑到水准测量的高程传递误差和GPS测量得到坐标高程(大地高)分量的误差,那么GPS测得的高程变化与水准测量测得的变化是一致的;用GPS测得的沉降量(大地高变化量)与直接用精密水准得到的结果(正常高变化量)相当一致,两者偏差的均方根值为11.6mm/a。
1998年,上海开始进行GPS技术监测地面沉降试验研究。目前,已建成由4座GPS基准站、33座一级网点、110座二级网点组成的地面沉降GPS监测网。2001年至今,上海地面沉降GPS监测网已进行了9次观测,每期实测点数为33点(一级网),同步投入6台GPS接收机,其中第3~6期同步投入10台GPS接收机,采用边连式、网连式布网。当GPS一级网点遭破坏或者周围环境条件不宜进行GPS观测时,就近选取二级网点补充,保证每次测量GPS网的点位密度均匀。地面沉降GPS一级网组成一个整体监测网,内业采用速率模型进行整体平差。随着地面沉降GPS监测技术的发展和数据处理方法的不断优化,2004年后上海地面沉降GPS测量值与水准测量的差值平稳,一致性较好。
2003年,中国地质调查局启动“华北平原地面沉降调查与监测”项目。该项目在华北平原建设的地面沉降监测GPS网共有5座GPS基准站、152座观测墩,并完成266 点次的GPS监测。其中,北京地区地面沉降GPS监测网络已初具规模,已实现每天
vor导航系统相比ndb导航系统有哪些优点
vor导航系统相比ndb导航系统优点:VOR信号发射机和接收机的工作频率在108.0-117.95 MHz之间。VOR台站发射机发送的信号有两个:一个是相位固定的基准信号;另一个信号的相位是变化的,向各个角度发射的信号的相位都是不同的,它们与基准信号的相位差自然就互不相同。
向360度发射的信号(指向磁北极)与基准信号是同相的,而向180度发射的信号(指向磁南极)与基准信号相位差180度。飞机上的VOR接收机根据所收到的两个信号的相位差就可判断飞机处于台站向哪一个角度发射的信号。
vor导航系统的特点
VOR是一种近程无线电测角导航系统,其导航具有成本低,航线多,精度高等优点,是很多民用机场常用的进近导航设备。但同时用VOR导航时,飞机离导航台越远导航误差也越大。利用机场安装的VOR台,可以实现飞机离场和归航和引导飞机进近。
利用两个已知位置的VOR台,可以实现飞机定位;与测距机配合,可以进行区域导航。和精密导航设备,VOR进近具有近距精度高,误差小;远距精度较差、误差较大的特点。
导航GPS怎么分
几种识别办法识 别地图主要有两种办法。一是现在市场上的大品牌,都使用自己特定品牌的正版地图,一个品牌的导航仪也就只有一个品牌的地图。比如SONY内置的是天行者地 图,万利达内置的是凯立德地图等,不可能什么地图都装。二是看激活码。正版地图在包装内都会有备份光盘,并且标注了产品的激活码。由于激活码是和硬件锁定 的,所以每张激活卡针对一台机子,不用担心该激活码被他人盗用。另据悉,按国家测绘局的规定,只有拥有了电子地图甲级测绘资质的企业才能 生产GPS地图,其余厂家生产的地图从严格意义上讲就是盗版。目前国家测绘局仅给9个厂家颁发了证书。也就是说,只有内置这9个厂家的电子地图,车载导航 系统才是名副其实的行车导游,才可以保证导航的相对精准。由此可见,市场上流行的所谓“破解”地图,实际上就是盗版地图的一种“美称”。如果你购买安装了非正版地图的导航仪,你的汽车生活也许就要与众多的尴尬连在一起了。 从功能上辨别真假GPS 那么什么是真假GPS呢?GPS本没有真假之分,都是GPS,但有行货 及水货之分。行货即大贸进口正版硬件、软件;水货即盗版走私的硬件及软件。由于盗版产品价格低廉因此目前非常泛滥,在我国大部分地区均使用该产品,因人们 对GPS的功能了解不够深刻,因此也不好分辨。如从用户角度来判断,就是定位不准、收不到报警、使用费用太高;从监控中心来辨别,就是西山定位到东山,监 控费用高的惊人,一旦收到报警就死机且警声无法解除等。另外,这种产品大都生产粗糙,主机内部均为手工焊接,外观粗糙类似三无产品。 另外,正版的软件不支持盗版硬件,是一个明显的特征。正版产品一般有如下功能:系统对所有车辆可实现同时跟踪、同时定位、****、组定位、组跟踪、区域 跟踪、区域定位等,这种方式即是一点对多点的优势,而监控中心不会产生费用。上述功能是盗版产品达不到的,以上是在功能上辨别真假GPS。 从工作程序上辨别真假GPS 其 次一种辨别方法是通过系统完成整个工作的程序来进行分辨。目前,市面出现不少GPRS型GPS产品。GPRS是数据传输的一种,真正的GPRS型GPS产 品是最前卫的,但必须和因特网并网使用才能真正的达到目的,才能达到零费用监控的要求,这是盗版软、硬件绝对达不到的。道理很简单,网络不支持盗版软件, 更无法在网上升级。为了达到降低市场推广难度的目的,因此也有不少公司以GPRS的名义推销自己的产品,实际上是“挂羊头卖狗肉”,做的是虚假包装和虚假 宣传。辨别的方法很简单,看它能否同时跟踪多辆车,跟踪24小时,一查监控中心和终端用户的费用便知端倪
全球四大卫星导航系统
GPS、中国北斗卫星导航系统、格洛纳斯、伽利略卫星导航系统。
1、GPS 是英文Global Positioning System(全球定位系统)的简称,而其中文简称为“球位系”。
GPS是20世纪70年代由美国陆海空三军联合研制的新一代空间卫星导航定位系统 。其主要目的是为陆、海、空三大领域提供实时、 全天候和全球性的导航服务,并用于情报收集、核爆监测和应急通讯等一些军事目的,是美国独霸全球战略的重要组成。
2、中国北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)是中国自行研制的全球卫星导航系统。
北斗卫星导航系统由空间段、地面段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度10米,测速精度0.2米/秒,授时精度10纳秒。
3、格洛纳斯(GLONASS),是俄语“全球卫星导航系统GLOBAL N**IGATION SATELLITE SYSTEM”的缩写。
该系统最早开发于苏联时期,后由俄罗斯继续该计划。俄罗斯 1993年开始独自建立本国的全球卫星导航系统。该系统于2007年开始运营,当时只开放俄罗斯境内卫星定位及导航服务。到2009年,其服务范围已经拓展到全球。该系统主要服务内容包括确定陆地、海上及空中目标的坐标及运动速度信息等。
4、伽利略卫星导航系统(Galileo satellite navigation system),是由欧盟研制和建立的全球卫星导航定位系统,该计划于1999年2月由欧洲委员会公布,欧洲委员会和欧空局共同负责。系统由轨道高度为23616km的30颗卫星组成,其中27颗工作星,3颗备份星。卫星轨道高度约2.4万公里,位于3个倾角为56度的轨道平面内。
扩展资料:
北斗芯片
2012年12月27日,国家正式宣布北斗卫星导航系统试运行启动,标志着中国自主卫星导航产业发展进入崭新的发展阶段。其中,卫星导航专用ASIC硬件结合国产应用处理器的方案,成为北斗卫星导航芯片一项重大突破。该处理器由中国本土IC设计公司研发,具有完全自主知识产权并已实现规模应用,一举打破了电子终端产品行业普遍采用国外处理器局面。
卫星导航终端中采用的导航基带及射频芯片,是技术含量及附加值最高的环节,直接影响到整个产业的发展。在导航基带中,一般通过导航专用ASIC硬件电路结合应用处理器的方案来实现。此前的应用处理器多选用国外公司ARM处理器芯片核,需向国外支付IP核使用许可费用的同时,技术还受制于人,无法彻底解决产业安全及保密安全问题。
而通过设立重大专项应用推广与产业化项目等方式,北斗多模导航基带及射频芯片国产化现已实现,中国人自己的应用处理器也在北斗多模导航芯片中得到规模应用。
先进导航与精密定位研究什么
先进导航与精密定位研究主要包括GPS、北斗等卫星导航系统相关的技术,以及改进卫星导航系统精度的测量方法,如基于非物理测量技术和利用现有MEMS感知技术和传感器网络技术的室内定位系统。
全球四大定位系统是什么
GPS系统(美国)
GPS系统是美国从上世纪70年代开始研制,主要目的是为陆海空三大领域提供实时、全天候和全球性的导航服务,并用于情报收集、核爆监测和应急通讯等一些军事目的,经过20余年的研究实验,耗资300亿美元,到1994年,全球覆盖率高达98%的24颗GPS卫星星座己布设完成。
2. 北斗系统(中国)
北斗卫星导航系统是中国自行研制的全球卫星定位与通信系统,是继美国GPS全球定位系统和俄国GLONASS之后第三个成熟的卫星导航系统。系统由空间端、地面端和用户端组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具有短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度优于20m。
3.GLONASS系统(俄罗斯)
“格洛纳斯”GLONASS是前苏联从80年代初开始建设的与美国GPS系统相类似的卫星定位系统,覆盖范围包括全部地球表面和近地空间,也由卫星星座、地面监测控制站和用户设备三部分组成。
4.伽利略卫星导航系统(欧盟)
Galileo系统总投资达35亿欧元的伽利略计划是欧洲自主的、独立的民用全球卫星导航系统,提供高精度,高可靠性的定位服务,实现完全非军方控制、管理,可以进行覆盖全球的导航和定位功能。
扩展资料
全球卫星导航系统,也称为全球导航卫星系统,是能在地球表面或近地空间的任何地点为用户提供全天候的3维坐标和速度以及时间信息的空基无线电导航定位系统。
常见系统有GPS、BDS、GLONASS和GALILEO四大卫星导航系统。最早出现的是美国的GPS,现阶段技术最完善的也是GPS系统。
随着近年来BDS、GLONASS系统在亚太地区的全面服务开启,尤其是BDS系统在民用领域发展越来越快。卫星导航系统已经在航空、航海、通信、人员跟踪、消费娱乐、测绘、授时、车辆监控管理和汽车导航与信息服务等方面广泛使用,而且总的发展趋势是为实时应用提供高精度服务。
参考资料:全球卫星导航系统--百度百科
全球四大卫星导航系统
1、全球定位系统(GPS),特点:具有全能性(陆地、海洋、航空、航天)、全球性、全天候、连续性、实时性的导航、定位和定时等多种功能。能为各类静止或高速运动的用户迅速提供精密的瞬间三维空间坐标、速度矢量和精确授时等多种服务。
2、全球导航定位系统——格洛纳斯(GLONASS),特点:工作不稳定,卫星工作寿命短,用户设备发展缓慢,生产厂家少,设备体积大而笨重,采用的是FDMA,所以用户接收机中频率综合器复杂,兼容接收机,需解决两系统的时间和坐标系统问题。
3、伽俐略卫星导航系统(GNSS),特点:将来精度最高的全开放的新一代定位系统。“伽利略”系统的地面系统部分主要由2个位于欧洲的“伽利略”控制中心(GCC)和20个分布全球的“伽利略”敏感器站(GSS)组成,另外还有用于进行控制中心与卫星之间数据交换的分布全球的5个S波段上行站和10个C波段上行站。
4、北斗卫星导航系统COMPASS,特点:1.用户定位的同时失去了无线电隐蔽性,这在军事上相当不利;2.由于设备必须包含发射机,因此在体积、重量上、价格和功耗方面处于不利的地位。3. 系统容量:每小时540000户 4.原子钟等关键组件到现在还需要依赖进口
中国卫星导航定位应用管理中心-格洛纳斯(GLONASS)
中国卫星导航定位应用管理中心-伽利略卫星导航系统
中国卫星导航定位应用管理中心-北斗卫星导航系统
中国科学院精密导航定位与定时技术重点实验室在哪
中国科学院精密导航定位与定时技术重点实验室
地址:北京市西城区三里河路52电话:010-68597114
中国科学院精密导航定位与定时技术重点实验室(以下简称重点实验室)于2008
年经批准成立。重点实验室以高精度时间传递和信号传播研究为基础,重点开展卫星导航授时及其它辅助导航授时与定时技术的研究工作。